
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A distributed charging strategy based on day ahead price model for PV-powered electric vehicle charging station

handle: 1959.3/447272
Abstract This paper studies a distributed charging model based on day-ahead optimal internal price for PV-powered Electric Vehicle (EV) Charging Station (PVCS). Considering the feed-in-tariff of PV energy, the price of utility grid and the forecast model of PV based on back-propagation neural network (BPNN), a system operation model of PVCS is introduced, which consists of the profit model of PVCS operator (PO) and the cost model of EV users. The model proposed in this paper can be designed as a Stackelberg game model, where the PO acts as the leader and all EV users participated are regarded as the followers. An optimization strategy based on heuristic algorithm and nonlinear constrained programming are adopted by the PO and each EV user, respectively. Moreover, a real-time billing strategy is proposed to deal with the errors from the forecasted PV energy and the expected charging arrangements. Finally, through a practical case, the validity of the model is verified in terms of increasing operation profit and reducing charging cost.
- Anhui University China (People's Republic of)
- Anhui University China (People's Republic of)
- Swinburne University of Technology Australia
- Swinburne University of Technology Australia
629
629
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
