Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Soft Computi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Soft Computing
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Straight line programs for energy consumption modelling

Authors: R. Rueda; M.P. Cuéllar; M.C. Pegalajar; M. Delgado;

Straight line programs for energy consumption modelling

Abstract

Abstract Energy consumption has increased in recent decades at a rate ranging from 1.5% to 10% per year in the developed world. As a consequence, several efforts have been made to model energy consumption in order to achieve a better use of energy and to minimize environmental impact. Open problems in this area range from energy consumption forecasting to user profile mining, energy source planning, to transportation, among others. To address these problems, it is important to have suitable tools to model energy consumption data series, so that the analysts and CEOs can have knowledge about the underlying properties of the power demand in order to make high-level decisions. In this paper, we focus on the problem of energy consumption modelling, and provide a solution from the perspective of symbolic regression. More specifically, we develop hybrid genetic programming algorithms to find the algebraic expression that best models daily energy consumption in public buildings at the University of Granada as a testbed, and compare the benefits of Straight Line Programs with the classic tree representation used in symbolic regression. Regarding algorithm design, the outcomes of our experimentation suggest that Straight Line Programs outperform other representation models in the symbolic regression problems studied, and also that the hybridation with local search methods can improve the quality of the resulting algebraic expression. On the other hand, with regards to energy consumption modelling, our approach empirically demonstrates that symbolic regression can be a powerful tool to find underlying relationships between multivariate energy consumption data series.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%