Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Environm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Atmospheric Environment
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CF3H production from the ozonolysis of HCFOs: E- and Z-CF3CH=CHCl

Authors: O.J. Nielsen; M.P. Sulbaek Andersen; T.J. Wallington;

CF3H production from the ozonolysis of HCFOs: E- and Z-CF3CH=CHCl

Abstract

As part of the green transition new technologies and chemical compounds are being introduced with lower climate impact. One example is the replacement of halogenated compounds with high global warming potentials (GWPs) using compounds with low GWPs. Halogenated olefins are a family of chemicals that has been developed as alternatives to high GWP hydrofluorocarbons (HFCs). The olefinic double bond provides a reaction site for atmospheric OH radicals, lowering the atmospheric lifetime and climate impact. There is interest in the possible production of trifluoromethane (CF3H, GWP = 14,600) (IPCC, 2021) from atmospheric photolysis of CF3CHO, an oxidation product from several hydrofluoroolefins (HFOs). In addition to reaction with OH, the double bond in HFOs is reactive towards other atmospheric oxidants, including chlorine and ozone. The production of CF3H from the ozonolysis of different commercially relevant fluorinated olefins has been reported (McGillen et al., PNAS, 120, e2312714120, 2023). If CF3H is formed in the ozonolysis of HFOs, it is plausible that it would also be formed in other halogenated olefins with a CF3CH = moiety. HCFO-1233zd (CF3CH=CHCl) is a widely used hydrochlorofluoroolefin (HCFO). We report the formation of CF3H in molar yields of (6.1 ± 0.9) % and (6.4 ± 1.0) % in the ozonolysis of E- and Z-CF3CH=CHCl, respectively. This finding is discussed in the context of the contribution of halogenated olefins to the radiative forcing of climate change.

Country
Denmark
Related Organizations
Keywords

Ozonolysis, Halogenated olefins, Climate change, Trifluoromethane

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research