
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effectiveness of neural networks and transfer learning for indoor air-temperature forecasting

handle: 11583/2963305
Starting in 2007, EU set energy efficiency improvement targets in sectors with high energy-saving potential such as buildings. ICT allows innovative opportunities for energy consumption forecast to integrate with new control policies such as Demand/Response and Demand Side Management to reduce energy waste. However, such technologies must overcome challenges such as the lack of accurate historic data required for predictions. This article proposes an innovative methodology supporting the energy management of HVAC systems, through Smart Building indoor air-temperature forecast. The applicability of innovative neural networks for time-series predictions is explored. These neural networks are first trained on an artificial but realistic dataset based on BIM simulations with real meteorological data. The inference phase is then carried out on a second dataset collected by IoT devices. Finally, Transfer Learning techniques are exploited to improve the performances predictions. Fanger’s model is applied to validate results, showing consistent levels of accuracy and comfort.
Transfer learning; Artificial neural networks; Indoor air-temperature forecasting; Smart building; Energy efficiency; Demand side management
Transfer learning; Artificial neural networks; Indoor air-temperature forecasting; Smart building; Energy efficiency; Demand side management
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
