Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Publikationer från U...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioelectrochemistry
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biosupercapacitors for powering oxygen sensing devices

Authors: Kizling, Michal; Draminska, Sylwia; Stolarczyk, Krzysztof; Tammela, Petter; Wang, Zhaohui; Nyholm, Leif; Bilewicz, Renata;

Biosupercapacitors for powering oxygen sensing devices

Abstract

A biofuel cell comprising electrodes based on supercapacitive materials - carbon nanotubes and nanocellulose/polypyrrole composite was utilized to power an oxygen biosensor. Laccase Trametes versicolor, immobilized on naphthylated multi walled carbon nanotubes, and fructose dehydrogenase, adsorbed on a porous polypyrrole matrix, were used as the cathode and anode bioelectrocatalysts, respectively. The nanomaterials employed as the supports for the enzymes increased the surface area of the electrodes and provide direct contact with the active sites of the enzymes. The anode modified with the conducting polymer layer exhibited significant pseudocapacitive properties providing superior performance also in the high energy mode, e.g., when switching on/off the powered device. Three air-fructose biofuel cells connected in a series converted chemical energy into electrical giving 2 mW power and open circuit potential of 2V. The biofuel cell system was tested under various externally applied resistances and used as a powering unit for a laboratory designed two-electrode minipotentiostat and a laccase based sensor for oxygen sensing. Best results in terms of long time measurement of oxygen levels were obtained in the pulse mode -45 s for measurement and 15 min for self-recharging of the powering unit.

Country
Sweden
Related Organizations
Keywords

Oxygen biosensor, Bioelectric Energy Sources, Materialkemi, Biosensing Techniques, Fructose, Electric Capacitance, Inorganic Chemistry, Fructose dehydrogenase, Teknik och teknologier, Catalytic Domain, Materials Chemistry, Electrodes, Nanocellulose, Trametes, Supercapacitor, Oorganisk kemi, Nanotubes, Carbon, Laccase, Biofuel cell, Polypyrrole, Enzymes, Immobilized, Oxygen, Biocatalysis, Engineering and Technology, Oxidoreductases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
Funded by
Related to Research communities
Energy Research