Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioelectrochemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioelectrochemistry
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Minimum interspatial electrode spacing to optimize air-cathode microbial fuel cell operation with a membrane electrode assembly

Authors: Tae Ho Lee; Young-Chae Song; Booki Min; Sanath Kondaveeti; Jung Mi Moon;

Minimum interspatial electrode spacing to optimize air-cathode microbial fuel cell operation with a membrane electrode assembly

Abstract

An optimum electrode spacing of less than 1cm was determined for an air cathode microbial fuel cell (MFC) with a membrane electrode assembly (MEA) system. The lag period decreased as the electrode spacing increased and the voltage generation increased. Stable power density increased from 93 mW/m(2) to 248 mW/m(2) when the electrode distance increased from 0mm to 9 mm. In the polarization test, a maximum power density (400 mW/m(2)) was obtained at a distance of 6mm. The oxygen mass transfer coefficient (KO=4.60×10(-5) cm/s) with a 0mm spacing was five times higher than that at a 9 mm spacing (0.89×10(-5) cm/s). Long-term operation of the MFC exhibited relatively stable anode potentials of -285±25 (0 mm) and -517±20 mV (3, 6, and 9 mm) and a gradual decrease in cathode potential for all distances, especially with 0-mm spacing. The performance of air cathode MFCs can be improved using minimum electrode spacing rather than no spacing.

Related Organizations
Keywords

Diffusion, Oxygen, Bioelectric Energy Sources, Dielectric Spectroscopy, Membranes, Artificial, Equipment Design, Wastewater, Electrodes

Powered by OpenAIRE graph
Found an issue? Give us feedback