Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioelectrochemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioelectrochemistry
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preliminary evaluation of electricity recovery from palm oil mill effluent by anion exchange microbial fuel cell

Authors: Nor Azureen Mohamad Nor; Fumichika Tanaka; Naoko Yoshida; Juhana Jaafar; Muhamad Zulhilmi Zailani; Siti Nur Afifi Ahmad;

Preliminary evaluation of electricity recovery from palm oil mill effluent by anion exchange microbial fuel cell

Abstract

This study assessed the viability of an anion-exchange microbial fuel cell (MFC) for extracting electricity from palm oil mill effluent (POME), a major pollutant in palm-oil producing regions due to increasing demand. The MFC incorporated a tubular membrane electrode assembly (MEA) with an air core, featuring a carbon-painted carbon-cloth cathode, an anion exchange membrane (AEM), and a nonwoven graphite fabric (NWGF) anode. An additional carbon brush (CB) anode was placed adjacent to the tubular MEA. The MFC operated under semi-batch conditions with POME replacement every 7 days. Results showed superior performance of the AEM, with the highest power density (Pmax) observed in POME-treated MFCs. Current and power density increased with CB addition; the best chemical oxygen demand (COD) removal efficiency reached 73 %, decreasing from 1249 to 332 mg/L with three CBs. The Pmax was 0.18 W/m-2(-|-) with 1000 mg/L COD and three CBs, dropping to 0.0031 W/m-2(-|-) without CB and at 410 mg/L COD. Anode resistance, calculated using organic matter supplementation, COD, and anode surface area, decreased with increased COD or surface area, improving electricity production. AEM and CB compatibility synergistically enhanced MFC performance, offering potential for POME wastewater treatment and energy recovery.

Keywords

Biological Oxygen Demand Analysis, Electricity, Bioelectric Energy Sources, Plant Oils, Industrial Waste, Palm Oil, Wastewater, Electrodes, Waste Disposal, Fluid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average