Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The potential for online monitoring of short-term process dynamics in anaerobic digestion using near-infrared spectroscopy

Authors: H. Heuwinkel; Urs Schmidhalter; Andreas Gronauer; L. Christian Krapf;

The potential for online monitoring of short-term process dynamics in anaerobic digestion using near-infrared spectroscopy

Abstract

Abstract This work reports the development of a near-infrared (NIR) spectroscopy online calibration for monitoring volatile solids (VS) and total volatile fatty acids (VFA) process parameters during anaerobic digestion (AD). The objective was to investigate its potential to estimate the dynamics of AD process parameters after feeding events. A recirculation loop was employed to record online measurements during an eight-month experiment using a 3.3 m 3 pilot plant fed with maize silage under mesophilic conditions. Sampling was performed to conduct calibrations and subsequent test-set validations, comparing the NIR spectroscopy estimates to the reference values. The calibrated accuracy in terms of mean prediction errors (RMSEP) was 3 g kg −1 for VS and 0.9 g kg −1 for VFA in the fresh matter. By applying the calibrations to time series spectra, the model accuracy provided adequate indications of the concentration changes, including highly sensitive monitoring of short-term VFA dynamics.

Powered by OpenAIRE graph
Found an issue? Give us feedback