Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Retention of hemicellulose during delignification of oil palm empty fruit bunch (EFB) fiber with peracetic acid and alkaline peroxide

Authors: Yusuf Chisti; Wilawan Palachum; Wanna Choorit; Suriya Palamae;

Retention of hemicellulose during delignification of oil palm empty fruit bunch (EFB) fiber with peracetic acid and alkaline peroxide

Abstract

Abstract Oil palm empty fruit bunches (EFB) are a lignocellulosic by product generated by palm oil mills. Delignified EFB fiber is a potential source of inexpensive hemicellulose, a substrate that is easily hydrolyzed to sugars for use in diverse biotechnological processes. The conditions for maximized selective removal of lignin from EFB fiber via separate treatments with alkaline peroxide and peracetic acid, were established such that the loss of hemicellulose was kept to a minimum. The amount of a reagent used in delignification, the temperature and the length of treatment, were optimized using a combination of Box–Behnken experimental design and the response surface method. Treatments with peracetic acid always left behind more hemicellulose and removed more lignin compared with the treatments involving alkaline peroxide. Under the best conditions (20 cm3 peracetic acid per g EFB, 35 °C, reaction time of 9 h), hemicellulose, cellulose and acid insoluble lignin constituted (dry weight basis) nearly 36%, 47% and ∼16%, respectively, of the treated acetone-washed extractive-free EFB fiber. Approximately 53% of the lignin was removed, but nearly all the hemicellulose was retained.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%