Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Starch hydrolysis in autogenerative high pressure digestion: Gelatinisation and saccharification as rate limiting steps

Authors: Ralph E.F. Lindeboom; Lei Ding; Jan Weijma; Caroline M. Plugge; Jules B. van Lier;

Starch hydrolysis in autogenerative high pressure digestion: Gelatinisation and saccharification as rate limiting steps

Abstract

Autogenerative high pressure digestion (AHPD) provides an integrated biogas upgrading technology, capable of producing biogas with a CH4 content exceeding 95% at pressures up to 90 bar. Hydrolysis is generally regarded as the rate-limiting step in the anaerobic digestion of complex organic matter, governing the volatile fatty acid (VFA) production rate for subsequent conversion to methane. Starch hydrolysis rates in AHPD systems were studied and the potential risk for VFA accumulation was assessed. Under the anticipated practical moderate pressure conditions at 30 °C, experimental CH4-content of the biogas improved from 49 to 73 ± 2% at atmospheric and elevated pressure, respectively. Furthermore, no significant effect of pressure on the hydrolysis was found. Like under atmospheric pressure, gelatinisation was the rate-limiting step for particulate starch (0.05 d-1) and saccharification for gelatinised starch (0.1 d-1). Because no effect was observed on starch, an effect on the hydrolysis rate of more complex organic matter like (ligno-)cellulose is also not anticipated.

Keywords

amylase, reactors, temperature, carbon-dioxide, bacterium, kinetics, biogas, amylolytic enzymes, anaerobic-digestion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average
bronze