Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Short-term growth and morphological responses to nitrogen availability and plant density in hybrid poplars and willows

Authors: Takamitsu Mamashita; Guy R. Larocque; Annie DesRochers; Jean Beaulieu; Barb R. Thomas; Alex Mosseler; John Major; +1 Authors

Short-term growth and morphological responses to nitrogen availability and plant density in hybrid poplars and willows

Abstract

Abstract Morphological characteristics of poplar and willow clones were determined in order to identify main characteristics leading to superior growth under increased plant competition with low or high nitrogen (N) availability. Seven hybrid poplar ( Populus spp. including one hybrid aspen) and five willow ( Salix spp.) clones were grown under greenhouse conditions for 13 weeks at three spacings (20 × 20, 35 × 35, and 60 × 60 cm) and two N levels (20 and 200 mg kg −1 ). The decrease in spacing from 60 to 20 cm reduced leaf area by 50% but clones had similar aboveground biomass per tree under all spacings, with increasing their height per unit leaf area. More productive clones had greater leaf area (+102%), leaf area per unit plant biomass (+12%) and lower root-to-shoot ratios (−27%) compared to less productive clones. There were positive relationships between leaf area and above-ground biomass per tree for both more and less productive clones. Compared to low N level and 60 cm spacing, trees growing in high N level and 20 cm spacing reached similar root collar diameter, crown width, and leaf area values and even greater height, suggesting that an addition of N could help mitigate negative effects of tree competition.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
bronze