Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

60 Co-γ radiation-induced changes in the physical and chemical properties of rapeseed straw

Authors: ChunYan Zhang; XiaoJun Su; XingYao Xiong; QiuLong Hu; Samuel Amartey; XingHe Tan; Wensheng Qin;

60 Co-γ radiation-induced changes in the physical and chemical properties of rapeseed straw

Abstract

Abstract We investigated changes in the physical and chemical properties of rapeseed straw after treatment with different doses of 60 Co γ-irradiation (0 kGy-1200 kGy). Raman spectra, electron spin resonance (ESR), and nuclear magnetic resonance (NMR) analyses of the pretreated samples showed that the irradiation partially destroyed the intra- or intermolecular structure of rapeseed straw. Particle size distribution and specific surface area analyses suggested that irradiation decreased the particle size, narrowed the distribution range, and increased the specific surface area. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves showed that increasing the irradiated dose decreased the thermal stability of the treated rapeseed straw and increased the reactivity. Elemental analyses suggested that the oxygen content slightly increased, suggesting that oxygen in the air may be involved in the reaction. These results demonstrate that γ-irradiation can induce a series of changes in the physical and chemical properties of rapeseed straw.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%