Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Green algae Ankistrodesmus fusiformis cell disruption using different modes

Authors: Virginija Skorupskaite; Violeta Makareviciene; Martynas Ubartas; Jurate Karosiene; Milda Gumbyte;

Green algae Ankistrodesmus fusiformis cell disruption using different modes

Abstract

Abstract Two different microalgae cell disruption modes, ultrasonication (VCX 130 ultrasonic processor and enclosed system) and ultrahomogenization, have been used in this study. The objective of this study was to estimate the efficiency of algae cell disruption by applying various techniques for disrupting green algae Ankistrodesmus fusiformis and using non-treated and frost-treated algae suspensions. The experiments were carried out using working regimes from 1 to 70 min. The highest efficiency (100%) of cell disruption was achieved with microalgae Ankistrodesmus fusiformis using an ultrasonic processor at the following conditions: frozen and defrosted algae suspension; fixed temperature of suspension; processing time – 60 min. Pre-treatment of microalgae suspension using frost improves disruption effectiveness. Pre-treatment of suspension using frost before mechanical cell disruption improves efficiency app. from 1 to 12%.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%