
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties

handle: 11583/2719129 , 11572/230961
Abstract This study reports about the use of Biochar derived from maple tree as a filler in Epoxy resin. Maple tree blocks were pyrolyzed in inert atmosphere at 600 °C and 1000 °C respectively and were characterized morphologically. The composite mechanical properties, i.e. stress-strain curves and related parameters (ultimate tensile strength, Young modulus, resilience, tensile toughness) were recorded as well as their friction coefficient. It is shown that at very low wt.% of the filler, the Young modulus is increased while at higher wt.% (2 wt% and above) the fragile behavior of the resin was converted in a ductile one, as elongation at break increased from 0.02 to 0.12. A huge impact of the filler is observed on tensile toughness as for the best sample is increased 11 times with respect with pure resin. A simple model able to describe the results and make predictions on other wt.% is presented as well.
- Instituto Politécnico Nacional Mexico
- Queen Mary University of London United Kingdom
- University of Ontario Institute of Technology Canada
- Agenzia Spaziale Italiana Italy
- Polytechnic University of Turin Italy
Biochar, Biochar; Mechanical characterization; Polymer Composite, Mechanical characterization polymer composites, Biochar; Mechanical characterization; polymer composites; Forestry; Renewable Energy, Sustainability and the Environment; Agronomy and Crop Science; Waste Management and Disposal
Biochar, Biochar; Mechanical characterization; Polymer Composite, Mechanical characterization polymer composites, Biochar; Mechanical characterization; polymer composites; Forestry; Renewable Energy, Sustainability and the Environment; Agronomy and Crop Science; Waste Management and Disposal
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).111 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
