Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cynara cardunculus a novel substrate for solid-state production of Aspergillus tubingensis cellulases and sugar hydrolysates

Authors: Silvia Crognale; Federico Liuzzi; Alessandro D'Annibale; Isabella de Bari; Maurizio Petruccioli;

Cynara cardunculus a novel substrate for solid-state production of Aspergillus tubingensis cellulases and sugar hydrolysates

Abstract

Abstract The production of seed oils from Cynara cardunculus generates huge amounts of lignocellulosic residues which can be exploited according to a cascade approach. In this paper, residual cardoon biomass (RCB) was tested as a growth substrate for the solid-state production of cellulolytic cocktails by species known to produce glucose-tolerant β-glucosidase isoenzymes. Best productions were obtained with 10-d-old Aspergillus tubingensis cultures on RCB supplemented with wheat bran (200 g kg−1) yielding β-glucosidase and endo-β-1,4-glucanase activities as high as (25 and 4) IU g−1, respectively, and 4 FPU g−1. The saccharification performance of the obtained cocktail tested on acid-catalysed steam-exploded RCB at low solid loading (25 g dm−3) was around 53% at 20 FPU g−1 cellulose. These performance were significantly enhanced by adding the xylanase-rich NS 22083 commercial formulation, reaching glucose yields higher than 80% after 72 h incubation. The use of the catalytic additive was optimized by a statistical approach, based on factorial analysis. A comparison of the performance of the A. tubingensis reinforced cocktail with the Cellic®CTec2 taken as benchmark formulation was done at the same enzyme load and performed at industrially relevant solid loadings, namely at (100 and 200) g dm−3. This comparison showed that Cellic®CTec2 led to only slightly higher glucose yields while an opposite outcome was observed for xylose yields, irrespective of the solid loading conditions. Thus, this study shows that an in-house enzyme production, based on the solid-state conversion of an industrial byproduct, able of yielding cellulolytic cocktails with substantial saccharification performance is feasible.

Country
Italy
Keywords

AGR/13

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%