Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synergistic effect of humic acid on alkali pretreatment of sugarcane bagasse for the recovery of lignin with phenomenal properties

Authors: Uma Maheswari R.; Mavukkandy M. O.; Adhikari U.; Naddeo V.; Sikder J.; Arafat H. A.;

Synergistic effect of humic acid on alkali pretreatment of sugarcane bagasse for the recovery of lignin with phenomenal properties

Abstract

Abstract Lignin forms a recalcitrant structure in lignocellulosic biomass and hence huge amount of enzymes are required for disintegrating it into their subsequent components, like glucose and other by-products. Thus, the pretreatment is an ineluctable step in the bioethanol scheme for the delignification of biomass and also the recovery of lignin, an emerging value added polymer in many industrial applications. A green facile method was developed wherein humic acid (HA) acts as a catalyst and surfactant in the alkali pretreatment of sugarcane bagasse for the step reduction in lignin recovery scheme with phenomenal properties and enhanced enzymatic-hydrolysis. HA assisted experiments were performed with and without calcium chloride (CaCl2). Effective disintegration of lignocellulose by the cleavage of β-O-4 moieties resulted in forming lignin and hydrolyzable biomaterial via two pathways. Possible covalent linkages between the HA and lignin resulted in the release of esters as a byproduct. Thus, the delignified biomass, the isolated lignin and a variety of esters, could be valorised in various industrial applications. The biomass was characterized by XRD and SEM analysis. The isolated lignin was characterized using FTIR, NMR, GPC, SEM, and TGA – DTA studies. The yield of recovered pure lignin for the two process was 90–100%, as measured through gravimetric analysis. The produced esters were confirmed using FTIR studies. Batch enzymatic hydrolysis was performed for the HA assisted de-lignified bagasse (without CaCl2), which demonstrated a 19% increase in glucose yield compared to the alkali treated bagasse. The produced hydrolysates were subjected to fermentation for the production of ethanol.

Country
Italy
Keywords

Bagasse; Enzymatic hydrolysis; Fermentation; Fragmentation; Humic acid; Lignin recovery

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%