Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomass and Bioenerg...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring temporal aspects of climate-change effects due to bioenergy

Authors: Samuel J.G. Cooper; Rowan Green; Laura Hattam; Mirjam Röder; Andrew Welfle; Marcelle McManus;

Exploring temporal aspects of climate-change effects due to bioenergy

Abstract

Abstract The greenhouse gas emissions associated with bioenergy are often temporally dispersed and can be a mixture of long-term forcers (such as carbon dioxide) and short-term forcers (such as methane). These factors affect the timing and magnitude of climate-change impacts associated with bioenergy in ways that cannot be clearly communicated with a single metric. This is critical as key comparisons that determine incentives and policy for bioenergy are based upon climate-change impacts expressed as carbon dioxide equivalent calculated with GWP100. This paper explores these issues further and presents a spreadsheet tool to facilitate quick assessment of these temporal effects. The potential effect of (i) a mix of GHGs and (ii) emissions that change with time are illustrated through two case studies. In case study 1, variations in the mix of greenhouse gases mean that apparently similar impacts after 100-years, mask radically different impacts before then. In case study 2, variations in the timing of emissions cause their climate-change impacts (integrated radiative-forcing and temperature change) to differ from the impacts that an emissions-balance would suggest. The effect of taking alternative approaches to considering “CO2-equivalence” are also assessed. In both cases, a single metric for climate-change effects was found to be wanting. A simple tool has been produced to help practitioners evaluate whether this is the case for any given system. If complex dynamics are apparent, it is recommended that additional metrics, more detailed inventory, or full time-series impact results are used in order to accurately communicate these climate-change effects.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    download downloads 9
  • 9
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
9
Top 10%
Average
Top 10%
9
Green
bronze