
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessment of a novel single-stage integrated dark fermentation-microbial fuel cell system coupled to proton-exchange membrane fuel cell to generate bio-hydrogen and recover electricity from wastewater

Abstract The production of bio-hydrogen and bio-electricity from biological processes has become a relevant scientific subject in recent years, given that renewable energy can be obtained from organic substrate. Dark fermentation (DF), and microbial electrolysis cells (MECs) have been used to produce bio-hydrogen. In this study, a novel integrated single-stage DF-Microbial fuel cells (MFCs) system was developed to generate bio-hydrogen and electricity simultaneously from wastewater treatment. A proton-exchange membrane fuel cell (PEMFC) was used to produce electricity from the bio-hydrogen gas generated by the integrated system. The effect of hydraulic retention time (HRT) on the bio-hydrogen production and electricity generation was examined. The maximum volumetric bio-hydrogen production rate (VHPR) was 0.44 L H2/L.d (0.66 L H2/g CODremoved), simultaneously obtaining an electricity production of 530 mV (100 mW/m2) at a HRT of 8 d. According to the 16S rRNA gene-based analysis, the microorganisms identified on the anode of the integrated system were: Chryseobacterium, Azotobacter, Bacillus, Enterococcus, Citrobacter, and Methanobacterium. The PEMFC employed to generate voltage using the bio-hydrogen generated from the integrated system was able to produce a maximum voltage of 459 mV (367 mW), with a maximum cell efficiency of 44% (fuel usage of 1.5 × 10−5 mol/h).
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
