Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2022
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2022
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy recovery options for the management of cellulose-based bio-plastics and mixed municipal solid waste

Authors: Giovanni Gadaleta; Sabino De Gisi; Caterina Picuno; Joern Heerenklage; Kerstin Kuchta; Andrea Sorrentino; Michele Notarnicola;

Energy recovery options for the management of cellulose-based bio-plastics and mixed municipal solid waste

Abstract

The incomplete degradation of bio-plastics waste is undermining the suitability of current anaerobic digestion (AD) and composting, opening up the exploration of new treatment routes, including mixed waste. Bio-plastics are treated with mixed waste in a mechanical-biological treatment (MBT) plant with the production of a dry fraction for incineration and a biologically stable one for landfill. An alternative post-treatment of the bio-stabilised waste based on AD is possible. It follows that the main goal of this study is to verify the feasibility of managing cellulose-based bio-plastics with mixed municipal waste, comparing the AD of the MBT plant outputs with the possible solution of incineration. Experimental lab tests have been carried out to describe the two processes, whose results were the basis for an economic analysis. The values of biochemical methane po-tential (BMP) and higher heating value (HHV) are used as an index for AD and incineration, respectively. Samples with and without bio-plastics were created; fresh and processed (7 and 14 days of biostabilization) samples were, thus, analysed. For AD, the fresh waste averaged 177 NmL CH4/gVS and a 22% and 33% decrease in BMP value was achieved after 7 and 14 days of biostabilization, respectively. Samples with and without bio-plastics revealed a similar trend. 7 and 14 days of biostabilization increased the HHV of fresh waste (18.01 J/kg) of 16.1% and 19.7%, respectively. Bio-plastics did not significantly change the HHV. The economic analysis revealed the suitability of both AD and incineration, irrespective of the presence of bioplastics.

Countries
Italy, Italy, Italy, Germany
Keywords

Heating value, Cellulose acetate, Anaerobic digestion; BMP test; Cellulose acetate; Economic analysis; Heating value; Incineration, Economic analysis, Incineration, BMP test, Anaerobic digestion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
  • 1
    views
    Data sourceViewsDownloads
    TUHH Open Research10
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
8
Top 10%
Average
Top 10%
1