
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Mild production of γ-valerolactone, a biofuel precursor, through the catalytic hydrogenation of a biomass derivative using hydrogen produced by photoelectrochemical water splitting
handle: 10550/93578
In this article, an efficient and innovative coupled system that involves hydrogen generation from water and hydrogenation of a biomass derived compound is shown for the first time. We have demonstrated that it is possible to use hydrogen produced from photoelectrochemical water splitting for the hydrogenation of a widely available biomass-derived compound (levulinic acid) into a versatile fuel component and/or precursor (γ-valerolactone). This compound, conversely to hydrogen, can be easily stored and handled. The photoelectrocatalyst selected was a TiO2 nanostructure synthesized by electrochemical anodization. The hydrogen produced was simultaneously used to carry out a hydrogenation reaction to transform levulinic acid into γ-valerolactone. The generated hydrogen was transferred to a catalytic reactor containing an aqueous solution of levulinic acid (LA) in the presence of a Ru based catalyst. Remarkable formation of γ-valerolactone (GVL) was obtained at temperatures as low as 30-60 °C. Yields to GVL of ca. 95 % have been obtained with this novel coupled system at only 60 °C. These results confirm the potential utilization in the biomass valorization of in-situ hydrogen production by photoelectrochemical water splitting.
- University of Navarra Spain
- IESE Business School Spain
- University of Valencia Spain
química
química
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
