Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhanced biobutanol production with sustainable Co-substrates synergy from paper waste and garden waste with municipal biowaste

Authors: Sara Farmanbordar; Armaghan Javid; Hamid Amiri; Joeri F.M. Denayer; Keikhosro Karimi;

Enhanced biobutanol production with sustainable Co-substrates synergy from paper waste and garden waste with municipal biowaste

Abstract

Synergy in the co-processing of lignocellulosic wastes and municipal biowaste (MB) can unlock their potential for biobutanol production. This study assessed the potential for biobutanol production through the co-processing of lignocellulosic waste and MB. Specifically, it compared the co-processing of paper waste with MB to that of garden waste and MB. Ethanol organosolv pretreatment served as a dual-function process for both pretreatment and detoxification purposes. Initial fermentation of hydrolysates from untreated paper waste using Clostridium acetobutylicum produced 0.9 g/L of acetone and ethanol but no detectable butanol. Organosolv pretreatment led to a significant increase in acetone and ethanol production but did not yield butanol. Co-processing paper waste with MB using organosolv pretreatment resulted in the production of 2.8–3.2 g/L butanol, along with increased acetone and ethanol production. Furthermore, co-processing a 1:1 (w/w) mixture of paper waste and MB under mild and severe pretreatment conditions produced 45.5 g and 43.4 g butanol, respectively, compared to 34.8 g and 14.4 g butanol when processing these waste streams separately. The study also explored the positive impact of co-processing garden waste with MB, a distinct lignocellulosic source, enhancing acetone-butanol-ethanol (ABE) yield by 27–40%. These findings highlight the potential of synergistic waste co-processing for achieving a more suitable balance of nutrients to enhance biobutanol and ABE production from biowastes. Additionally, the simultaneous treatment of lignocellulosic waste and municipal biowaste offers a simplified approach to waste processing, contributing to advancements in sustainable biomass utilization and bioenergy production.

Country
Belgium
Related Organizations
Keywords

Garden waste, Biobutanol, Municipal biowaste, Paper waste, Organosolv pretreatment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
Green
Related to Research communities
Energy Research