Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomass and Bioenerg...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomass and Bioenergy
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomass and Bioenergy
Article . 2024
License: CC BY
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of pH in syngas conversion to C4 & C6 acids in mixed-culture trickle bed reactors

Authors: Cesar Quintela; Antonio Grimalt-Alemany; Oskar Modin; Yvonne Nygård; Lisbeth Olsson; Ioannis V. Skiadas; Hariklia N. Gavala;

Effect of pH in syngas conversion to C4 & C6 acids in mixed-culture trickle bed reactors

Abstract

Syngas fermentation allows for the conversion of wastes into useful commodity chemicals. To target higher value products, the conditions can be tuned to be favourable for both acetogenic and reverse beta-oxidation pathways and produce, in one stage, butyric and caproic acid. Studies in CSTR have shown the crucial role of pH, which must be low enough to allow for ethanol generation in the acetogenic step while avoiding the inhibition of reverse β-oxidation in acidic conditions. However, no studies have investigated the effect of pH in reactor configurations suitable for syngas fermentation (i.e., allowing for cell retention and exhibiting high mass transfer rates at low operating costs), such as Trickle Bed Reactors, TBR. In this study, two TBR were used to study the pH effect on the fermentation of syngas to produce C4 and C6 acids, using undefined mixed cultures. Five pH values were tested in the range 4.5–7.5, and pH 6 was found to be the most favourable for simultaneous production of C4 & C6 acids from syngas, which agrees with what was found in suspended growth systems. In addition, the highest titers in literature so far were achieved in the TRB. 16S rRNA analysis was performed showing Clostridium and Rummenliibacillus to be the key genus for the efficient process at pH 6. Finally, the experimental methodology followed, and data collected proved the robustness of mixed culture biofilm reactors in respect to pH changes, as the same reactor performance and bacterial community were achieved regardless of the operation history.

Country
Denmark
Keywords

Syngas fermentation, Trickle bed reactor, Butyric acid, Chain elongation, Reverse beta oxidation, Caproic acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green
hybrid