
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification

pmid: 17911013
A concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification was investigated in a well known UASB reactor seeding with both ANAMMOX and anaerobic granular sludges. ANAMMOX activity was confirmed by hydroxylamine test and the hybridization of biomass using the gene probes of Amx 820 and EUB 338 mixed. Denitrification was observed through the reductions of both COD and nitrate-nitrite concentrations under anaerobic/anoxic conditions. By providing a stoichiometric ratio of nitrite to ammonium nitrogen with addition nitrate nitrogen, a gradual reduction of ANAMMOX activity was found with an increase of COD concentration in a range of 100-400 mg l(-1). This is equivalent to the COD to N ratio of 0.9-2.0. The COD concentration was found to be a control variable for process selection between ANAMMOX reaction and denitrification. A reduction of COD and nitrite-nitrate concentrations in all reactors confirmed the undergone concurrent denitrification which thrives when sufficient organic matter is available. COD concentration over 300 mg l(-1) was found to inactivate or eradicate ANAMMOX communities.
- Technical University of Denmark Denmark
- Thammasat University Thailand
- Sirindhorn International Institute of Technology Thailand
- Thammasat University Thailand
- Sirindhorn International Institute of Technology Thailand
Bacteria, Nitrogen, Hydroxylamine, Hydrogen-Ion Concentration, Oxygen, Quaternary Ammonium Compounds, Kinetics, Bioreactors, Hydrazines, Anaerobiosis, Biomass, Oxidation-Reduction
Bacteria, Nitrogen, Hydroxylamine, Hydrogen-Ion Concentration, Oxygen, Quaternary Ammonium Compounds, Kinetics, Bioreactors, Hydrazines, Anaerobiosis, Biomass, Oxidation-Reduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).298 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
