Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2010
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Isolation and quantification of cadmium removal mechanisms in batch reactors inoculated by sulphate reducing bacteria: Biosorption versus bioprecipitation

Authors: PAGNANELLI, Francesca; CRUZ VIGGI, CAROLINA; TORO, Luigi;

Isolation and quantification of cadmium removal mechanisms in batch reactors inoculated by sulphate reducing bacteria: Biosorption versus bioprecipitation

Abstract

Biosorbing properties of sulphate reducing bacteria were tested to distinguish the amount of cadmium removed by bioprecipitation from that bound onto biomass surface (biosorption). Experimental results of cadmium abatement in batch growth tests (bioprecipitation tests) were then compared with metabolism-independent binding properties of SRB cell wall surface (biosorption tests performed with dead biomass). Experimental results showed that SRB inoculum removed 59 + or - 5% of sulphates in 21 days even in presence of cadmium (0-36 mmol L(-1)), while non-monotonous kinetic effects were observed for increasing Cd concentrations. Comparison between bioprecipitation and biosorption tests denoted a significant contribution of biosorption (77%) in total Cd removal (0.40 + or - 0.01 mmol g(-1)). Characterisation of bacterial acid-base surface properties by potentiometric titrations and mechanistic modelling denoted that carboxylic, phosphate and amino groups of cell wall are the main responsible of metal removal by biosorption mechanism.

Country
Italy
Keywords

Time Factors, Bioprecipitation, Fractional Precipitation, Modelling, Bioreactors, bioprecipitation; biosorption; cadmium; modelling; sulphate reducing bacteria, Biomass, Bacteria, Sulfates, Temperature, Hydrogen-Ion Concentration, Solutions, Biodegradation, Environmental, Biosorption, Potentiometry, Regression Analysis, Adsorption, Sulphate reducing bacteria, Oxidation-Reduction, Cadmium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%