Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production

Authors: Sang Jun Sim; Minh-Thu Nguyen; Seung Phill Choi;

Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production

Abstract

The production of ethanol from feedstock other than agriculture materials has been promoted in recent years. Some microalgae can accumulate a high starch content (about 44% of dry base) via photosynthesis. Algal biomass, Chlamydomonas reinhardtii UTEX 90, was converted into a suitable fermentable feedstock by two commercial hydrolytic enzymes. The results showed that almost all starch was released and converted into glucose without steps for the cell wall disruption. Various conditions in the liquefaction and saccharification processes, such as enzyme concentration, pH, temperature, and residence time, have been investigated to obtain an optimum combination using the orthogonal analysis. As a result, approximately 235 mg of ethanol was produced from 1.0 g of algal biomass by a separate hydrolysis and fermentation (SHF) method. The main advantages of this process include the low cost of chemicals, short residence time, and simple equipment system, all of which promote its large-scale application.

Related Organizations
Keywords

Ethanol, Hydrolysis, Carbohydrates, Temperature, Eukaryota, Hydrogen-Ion Concentration, Enzymes, Glucose, Fermentation, Biomass, Photosynthesis, Chlamydomonas reinhardtii, Biotechnology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    346
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
346
Top 1%
Top 1%
Top 1%