Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells

Authors: Jy-Yeon Kim; Ganesh Dattatraya Saratale; Sang-Eun Oh; Kyung-Won Park; Jung Rae Kim; Sang-Beom Han;

Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells

Abstract

Co-naphthalocyanine (CoNPc) was prepared by heat treatment for cathode catalysts to be used in microbial fuel cells (MFCs). Four different catalysts (Carbon black, NPc/C, CoNPc/C, Pt/C) were compared and characterized using XPS, EDAX and TEM. The electrochemical characteristics of oxygen reduction reaction (ORR) were compared by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The Co-macrocyclic complex improves the catalyst dispersion and oxygen reduction reaction of CoNPc/C. The maximum power of CoNPc/C was 64.7 mW/m(2) at 0.25 mA as compared with 81.3 mW/m(2) of Pt/C, 29.7 mW/m(2) of NPc/C and 9.3 mW/m(2) of carbon black when the cathodes were implemented in H-type MFCs. The steady state cell, cathode and anode potential of MFC with using CoNPc/C were comparable to those of Pt/C.

Related Organizations
Keywords

Bioelectric Energy Sources, Spectrometry, X-Ray Emission, Cobalt, Naphthalenes, Catalysis, Electricity, Microscopy, Electron, Transmission, Coordination Complexes, Spectroscopy, Fourier Transform Infrared, Electrochemistry, Organometallic Compounds, Electrodes, Oxidation-Reduction, Electron Probe Microanalysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 10%
Top 10%
Top 1%
Related to Research communities
Energy Research