
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum

pmid: 20863693
Adaptation of Penicillium simplicissimum with different heavy metals present in a spent hydrocracking catalyst, as well as one-step, two-step, and spent medium bioleaching of the spent catalyst by the adapted fungus, was examined in batch cultures. Adaptation experiments with the single metal ions Ni, Mo, Fe, and W showed that the fungus could tolerate up to 1500 mg/L Ni, 8000 mg/L Mo, 3000 mg/L Fe, and 8000 mg/L W. In the presence of multi-metals, the fungus was able to tolerate up to 300 mg/L Ni, 200 mg/L Mo, 150 mg/L Fe and 2500 mg/L W. A total of 3% (w/v) spent catalyst generally gave the maximum extraction yields in the two-step bioleaching process (100% of W, 100% of Fe, 92.7% of Mo, 66.43% of Ni, and 25% of Al). The main lixiviant in the bioleaching was shown to be gluconic acid. The red pigment produced by the fungus could also possibly act as an agent in Al leaching.
- Sharif University of Technology Iran (Islamic Republic of)
- Lappeenranta-Lahti University of Technology LUT Finland
- Tarbiat Modares University Iran (Islamic Republic of)
- Tarbiat Modares University Iran (Islamic Republic of)
- Sharif University of Technology Iran (Islamic Republic of)
Penicillium, Industrial Waste, Hydrogen-Ion Concentration, Catalysis, Tungsten, Biodegradation, Environmental, Environmental Pollutants, Recycling, Biomass
Penicillium, Industrial Waste, Hydrogen-Ion Concentration, Catalysis, Tungsten, Biodegradation, Environmental, Environmental Pollutants, Recycling, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).104 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
