Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ethanol production from Eucalyptus plantation thinnings

Authors: Tony Vancov; Shane McIntosh; J. Palmer; M. Spain;

Ethanol production from Eucalyptus plantation thinnings

Abstract

Conditions for optimal pretreatment of eucalypt (Eucalyptus dunnii) and spotted gum (Corymbia citriodora) forestry thinning residues for bioethanol production were empirically determined using a 3(3) factorial design. Up to 161mg/g xylose (93% theoretical) was achieved at moderate combined severity factors (CSF) of 1.0-1.6. At CSF>2.0, xylose levels declined, owing to degradation. Moreover at high CSF, depolymerisation of cellulose was evident and corresponded to glucose (155mg/g, ∼33% cellulose) recovery in prehydrolysate. Likewise, efficient saccharification with Cellic® CTec 2 cellulase correlated well with increasing process severity. The best condition yielded 74% of the theoretical conversion and was attained at the height of severity (CSF of 2.48). Saccharomyces cerevisiae efficiently fermented crude E. dunnii hydrolysate within 30h, yielding 18g/L ethanol, representing a glucose to ethanol conversion rate of 0.475g/g (92%). Based on our findings, eucalyptus forest thinnings represent a potential feedstock option for the emerging Australian biofuel industry.

Related Organizations
Keywords

Eucalyptus, Xylose, Ethanol, Saccharomyces cerevisiae, Cellulase, Fermentation, Cellulose

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%