
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy requirement for alkali assisted microwave and high pressure reactor pretreatments of cotton plant residue and its hydrolysis for fermentable sugar production for biofuel application

pmid: 22420987
In the present work, alkali assisted microwave pretreatment (AAMP) of cotton plant residue (CPR) with high pressure reactor pretreatment was compared. Further, modeling of AAMP was attempted. AAMP, followed by enzymatic saccharification was evaluated and the critical parameters were identified to be exposure time, particle size and enzyme loading. The levels of these parameters were optimized using response surface methodology (RSM) to enhance sugar yield. AAMP of CPR (1mm average size) for 6 min at 300 W yielded solid fractions that on hydrolysis resulted in maximum reducing sugar yield of 0.495 g/g. The energy required for AAMP at 300 W for 6 min was 108 kJ whereas high pressure pretreatment (180°C, 100 rpm for 45 min) requires 5 times more energy i.e., 540 kJ. Physiochemical characterization of native and pretreated feedstock revealed differences between high pressure pretreatment and AAMP.
Waste Products, Analysis of Variance, Gossypium, Hydrolysis, Carbohydrates, Reproducibility of Results, Alkalies, Bioreactors, X-Ray Diffraction, Biofuels, Fermentation, Spectroscopy, Fourier Transform Infrared, Pressure, Thermodynamics, Biomass, Microwaves
Waste Products, Analysis of Variance, Gossypium, Hydrolysis, Carbohydrates, Reproducibility of Results, Alkalies, Bioreactors, X-Ray Diffraction, Biofuels, Fermentation, Spectroscopy, Fourier Transform Infrared, Pressure, Thermodynamics, Biomass, Microwaves
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).60 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
