Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel surfactant-assisted ultrasound pretreatment of sugarcane tops for improved enzymatic release of sugars

Authors: Sankar Vani; Varghese Elizabeth Preeti; Rajeev K. Sukumaran; Parameswaran Binod; Raveendran Sindhu; Mathiyazhakan Kuttiraja;

A novel surfactant-assisted ultrasound pretreatment of sugarcane tops for improved enzymatic release of sugars

Abstract

The aim of this study was to develop a novel surfactant-assisted ultrasound pretreatment of sugarcane tops as well as to optimize the effect of various operational parameters on pretreatment and hydrolysis. A novel surfactant-assisted ultrasound pretreatment was developed which could effectively remove hemicelluloses and lignin and improve the reducing sugar yield from sugarcane tops. Operational parameters for pretreatment and hydrolysis were studied and optimized. Under optimal hydrolysis conditions, 0.661 g of reducing sugar was produced per gram of pretreated biomass. The structural changes of native and pretreated biomass were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared analysis (FTIR). The results indicate that surfactant-assisted ultrasound pretreated sugarcane tops can be used as a potential feed stock for bioethanol production.

Keywords

Hydrolysis, Carbohydrates, Alkalies, Saccharum, Surface-Active Agents, Cellulase, Ultrasonics, Biomass, Particle Size, Crystallization, Biotechnology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 1%
Top 10%
Top 10%