Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of Monoraphidium contortum as a promising species for liquid biofuel production

Authors: Viktor Klassen; Michael Grundmann; Pauliina Uronen; Jan H. Mussgnug; Anja Doebbe; Marco La Russa; Olaf Kruse; +2 Authors

Identification of Monoraphidium contortum as a promising species for liquid biofuel production

Abstract

In this work, 30 microalgae strains from 17 genera were investigated in regard to biomass productivity in photoautotrophic growth conditions, lipid amount, lipid quality and biomass degradability. Six strains could be identified with robust phototrophic growth properties and high biomass productivities equal or above 300 mg l(-1) day(-1). Anaerobic fermentation of the algal biomass was most efficient for the marine members of the genera Dunaliella and Navicula, while biogas production with the freshwater strains generally resulted in lower methane yields. Monoraphidium contortum was identified as promising candidate for liquid biofuel production, characterized by high biomass productivity during maximum growth (maximum increase of 896 mg dry biomass weight (DW) l(-1) day(-1)) and a promising lipid profile. Neutral lipid production was strongly induced in M. contortum by nitrogen deficient conditions and accumulated to up to 20.4±2.2% of DW.

Keywords

Fatty Acids, Biofuels, Fermentation, Microalgae, Biomass, Methane

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 10%
Top 10%
Top 10%
bronze