
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Identification of Monoraphidium contortum as a promising species for liquid biofuel production

pmid: 23453981
In this work, 30 microalgae strains from 17 genera were investigated in regard to biomass productivity in photoautotrophic growth conditions, lipid amount, lipid quality and biomass degradability. Six strains could be identified with robust phototrophic growth properties and high biomass productivities equal or above 300 mg l(-1) day(-1). Anaerobic fermentation of the algal biomass was most efficient for the marine members of the genera Dunaliella and Navicula, while biogas production with the freshwater strains generally resulted in lower methane yields. Monoraphidium contortum was identified as promising candidate for liquid biofuel production, characterized by high biomass productivity during maximum growth (maximum increase of 896 mg dry biomass weight (DW) l(-1) day(-1)) and a promising lipid profile. Neutral lipid production was strongly induced in M. contortum by nitrogen deficient conditions and accumulated to up to 20.4±2.2% of DW.
- Czech Academy of Sciences Czech Republic
- Neste Oil (Finland) Finland
- Technology Centre Czech Republic
- Neste Oil Finland
- Bielefeld University Germany
Fatty Acids, Biofuels, Fermentation, Microalgae, Biomass, Methane
Fatty Acids, Biofuels, Fermentation, Microalgae, Biomass, Methane
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).84 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
