
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of strain-specific parameters on hydrothermal liquefaction of microalgae

pmid: 23958678
Algae are an interesting feedstock for producing biofuel via hydrothermal liquefaction (HTL), due to their high water content. In this study, algae slurries (5-7 wt% daf) from different species were liquefied at 250 and 375 °C in batch autoclaves during 5 min. The aim was to analyze the influence of strain-specific parameters (cell structure, biochemical composition and growth environment) on the HTL process. Results show big variations in the biocrude oil yield within species at 250 °C (from 17.6 to 44.8 wt%). At 375 °C, these differences become less significant (from 45.6 to 58.1 wt%). An appropriate characterization of feedstock appeared to be critical to interpret the results. If a high conversion of microalgae-to-biocrude is pursued, near critical conditions are required, with Scenedesmus almeriensis (freshwater) and Nannochloropsis gaditana (marine) leading to the biocrude oils with lower nitrogen content from each growth environment.
- University of Twente Netherlands
- Ghent University Belgium
- Institute for Sustainable Process Technology Netherlands
Time Factors, Nitrogen, Temperature, METIS-303206, Culture Media, Photobioreactors, Species Specificity, Biofuels, IR-90286, Chromatography, Gel, Microalgae, SDG 14 - Life Below Water, Biomass, Stramenopiles, Scenedesmus
Time Factors, Nitrogen, Temperature, METIS-303206, Culture Media, Photobioreactors, Species Specificity, Biofuels, IR-90286, Chromatography, Gel, Microalgae, SDG 14 - Life Below Water, Biomass, Stramenopiles, Scenedesmus
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).113 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
