
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Improvement of power generation using Shewanella putrefaciens mediated bioanode in a single chambered microbial fuel cell: Effect of different anodic operating conditions

pmid: 24935006
Three different approaches were employed to improve single chambered microbial fuel cell (sMFC) performance using Shewanella putrefaciens as biocatalyst. Taguchi design was used to identify the key process parameter (anolyte concentration, CaCl₂ and initial anolyte pH) for maximization of volumetric power. Supplementation of CaCl₂ was found most significant and maximum power density of 4.92 W/m(3) was achieved. In subsequent approaches, effect on power output by riboflavin supplementation to anolyte and anode surface modification using nano-hematite (Fe₂O₃) was observed. Volumetric power density was increased by 44% with addition of 100 nM riboflavin to anolyte while with 0.8 mg/cm(2) nano-Fe₂O₃ impregnated anode power density and columbic efficiency increased by 40% and 33% respectively. Cyclic voltammetry revealed improvement in electrochemical activity of Shewanella with nano-Fe₂O₃ loading and electrochemical impedance depicted inverse relationship between charge transfer resistance and nano-Fe₂O₃ loading. This study suggests anodic improvement strategies for maximization of power output.
Bioelectric Energy Sources, Biofuels, Conservation of Energy Resources, Shewanella putrefaciens, Electrodes, Ferric Compounds
Bioelectric Energy Sources, Biofuels, Conservation of Energy Resources, Shewanella putrefaciens, Electrodes, Ferric Compounds
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).83 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
