
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production

pmid: 26356110
In the present study, there was an investigation about the impact of a new combined thermo-chemo-sonic disintegration of waste activated sludge (WAS) on biodegradability. The outcome of sludge disintegration reveals that maximum Suspended Solids (SS) reduction and Chemical Oxygen Demand (COD) solubilization effectuated at a specific energy input of 5290.5kJ/kgTS, and was found to be 20%, 16.4%, 15% and 27%, 22%, and 20%, respectively for the three alkalis (NaOH, KOH, and Ca(OH)2). The conversion coefficient of the Volatile Suspended Solids (VSS) to product Soluble COD (SCOD), calculated by nonlinear regression modeling, was found to be 0.5530gSCOD/gVSS, 0.4587gSCOD/gVSS, and 0.4195gSCOD/gVSS for NaOH, KOH, and Ca(OH)2, respectively. In the biodegradability studies, the parameter evaluation provides an estimate of parameter uncertainty and correlation, and elucidates that there is no significant difference in biodegradability (0.413gCOD/gCOD, 0.367gCOD/gCOD, and 0.342gCOD/gCOD) for three alkalis (NaOH, KOH, and Ca(OH)2).
- Sungkyul University Korea (Republic of)
- Sungkyul University Korea (Republic of)
- An Giang University Viet Nam
- Anna University, Chennai India
- Hanoi University of Science and Technology Viet Nam
Biological Oxygen Demand Analysis, Sewage, Alkalies, Waste Disposal, Fluid, Kinetics, Biodegradation, Environmental, Solubility, Biofuels, Costs and Cost Analysis, Regression Analysis
Biological Oxygen Demand Analysis, Sewage, Alkalies, Waste Disposal, Fluid, Kinetics, Biodegradation, Environmental, Solubility, Biofuels, Costs and Cost Analysis, Regression Analysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).123 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
