Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Valorization of residual bacterial biomass waste after polyhydroxyalkanoate isolation by hydrothermal treatment

Authors: Shaobo Liang; Erik R. Coats; Armando G. McDonald; Liqing Wei;

Valorization of residual bacterial biomass waste after polyhydroxyalkanoate isolation by hydrothermal treatment

Abstract

Hydrothermal treatment (HTT) was used to convert residual bacterial biomass (RBB), recovered from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production, into valuable bioproducts. The effect of processing temperatures (150, 200, and 250°C) on the bioproducts (water-solubles (WSs), bio-oil, insoluble residue, and gas) was investigated. The yields of bio-oil and gas were higher at higher temperatures. The maximum WS content (28 wt%) was obtained at 200°C. GCMS analysis showed higher content of aromatics and N-containing compounds with increasing temperature. ESI-MS revealed chemical compounds (e.g. protein, carbohydrate, lipids, and lignin) associated with RBB are fragmented into smaller molecules (monomers) at higher HTT temperatures. The WS fraction contained totally 838, 889 and 886mg/g acids and 160, 31 and 21 mg/g carbohydrate for HTT at 150, 200, and 250°C, respectively. The solid residues contain unconverted compounds, especially after HTT at 150°C. The WS products (acids and carbohydrates) could be used directly for PHA biosynthesis.

Related Organizations
Keywords

Hot Temperature, 3-Hydroxybutyric Acid, Polyhydroxyalkanoates, Carbohydrates, Hydroxybutyrates, Industrial Waste, Lignin, Biofuels, Biomass, Pentanoic Acids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Average