
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Methane enhancement through oxidative cleavage and alkali solubilization pre-treatments for corn stover with anaerobic activated sludge

pmid: 26512865
In the present study, thermo-chemical pre-treatment was adopted to evaluate methane production potential from corn stover by co-digesting it with anaerobic activated sludge. Three chemicals H2O2, Ca(OH)2 and NaOH were selected with two levels of concentration. All thermo-chemical pre-treatments were found significant (P<0.05) to enhance lignocellulosic digestibility and methane production. The results indicated that the methane yield by H2O2-1, H2O2-2, and NaOH-2 treated corn stover were 293.52, 310.50 and 279.42ml/g.VS which were 57.18%, 66.27% and 49.63% higher than the untreated corn stover respectively. In the previous studies pre-treatment time was reported in days but our method had reduced it to about one hour. H2O2-2 and NaOH-2 treatments remained prominent to increase lignocellulosic degradation vigorously up to 45% and 42% respectively. Process biochemistry during the anaerobic digestion process was taken into consideration to optimize the most feasible thermo-chemical pre-treatment for corn stover.
- Jiangsu Academy of Agricultural Sciences China (People's Republic of)
- Nanjing Agricultural University China (People's Republic of)
- Nanjing Agricultural University China (People's Republic of)
Biological Oxygen Demand Analysis, Sewage, Hydrogen Peroxide, Alkalies, Hydrogen-Ion Concentration, Fatty Acids, Volatile, Lignin, Zea mays, Refuse Disposal, Polysaccharides, Alcohols, Anaerobiosis, Methane
Biological Oxygen Demand Analysis, Sewage, Hydrogen Peroxide, Alkalies, Hydrogen-Ion Concentration, Fatty Acids, Volatile, Lignin, Zea mays, Refuse Disposal, Polysaccharides, Alcohols, Anaerobiosis, Methane
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
