Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficiency of single stage- and two stage pretreatment in biomass with different lignin content

Authors: M.A. Kärcher; Y. Iqbal; I. Lewandowski; T. Senn;

Efficiency of single stage- and two stage pretreatment in biomass with different lignin content

Abstract

In current study the enzymatic glucose yields of miscanthus and wheat straw were compared after single stage- and two stage pretreatment with dilute sulfuric acid at different pretreatment severities. Glucose yields after two stage pretreatment were higher than after single stage pretreatment in miscanthus. Whereas wheat straw had higher glucose yields after single stage pretreatment. The study shows that two stage pretreatment has a negative effect on glucose yield in biomass with low not-acid-degradable lignin content and a positive one in biomass with high not-acid-degradable lignin content. The not-acid-degradable lignin fraction offers a higher degree of protection of the whole lignin structure against chemical attacks by mineral acids. More severe pretreatment conditions were needed to achieve a sufficient breakup of the lignin structure. But more severe conditions enhance resin formation, leading to lower enzyme activity and reduced carbohydrate yields.

Related Organizations
Keywords

Hydrolysis, Sulfuric Acids, Poaceae, Lignin, Glucose, Biomass, Triticum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%