Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Long term testing of Microbial Fuel Cells: Comparison of different anode materials

Authors: Bernardo Ruggeri; Tonia Tommasi; Karthikeyan Velayutham; Karthikeyan Velayutham; D. Hidalgo; D. Hidalgo;

Long term testing of Microbial Fuel Cells: Comparison of different anode materials

Abstract

This paper focuses on the long term operation and testing of three Microbial Fuel Cells (MFC) having three different anode materials: commercial carbon felt (C-FELT), polyaniline-deposited carbon felt (C-PANI) and carbon-coated Berl saddles (C-SADDLES). A mixed consortium from seawater was used as inoculum and acetate was used as substrate. Tests were conducted for four months under 1000Ω external load. The maximum power generation was obtained by C-SADDLES (102mWm(-2)) followed by C-FELT and C-PANI, respectively. A similar trend was obtained with the evaluation of electrical energy produced: C-SADDLES (2222J), C-PANI (2183J) and C-FELT (2114J). However, the performance of C-PANI decreased over time, most evidently due to degradation or deactivation of deposited polyaniline by the microorganisms' activity. These results provide evidence that the three-dimensional structure, C-SADDLES, offers excellent biocompatibility, high specific surface area, high conductivity and most importantly these properties are maintained for a long period of time.

Country
Italy
Keywords

Aniline Compounds, Time Factors, Bioelectric Energy Sources, Carbon, Solutions, Electricity, Carbon Fiber, Anode treatment; Three-dimensional material; Continuous operation; Marine environment; Electrical energy, Electrodes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%