Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioresource Technolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioresource Technology
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2016 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combustion reaction kinetics of guarana seed residue applying isoconversional methods and consecutive reaction scheme

Authors: Katia Tannous; Fernanda Cristina Rezende Lopes; Yesid Javier Rueda-Ordóñez;

Combustion reaction kinetics of guarana seed residue applying isoconversional methods and consecutive reaction scheme

Abstract

This work aims the study of decomposition kinetics of guarana seed residue using thermogravimetric analyzer under synthetic air atmosphere applying heating rates of 5, 10, and 15°C/min, from room temperature to 900°C. Three thermal decomposition stages were identified: dehydration (25.1-160°C), oxidative pyrolysis (240-370°C), and combustion (350-650°C). The activation energies, reaction model, and pre-exponential factor were determined through four isoconversional methods, master plots, and linearization of the conversion rate equation, respectively. A scheme of two-consecutive reactions was applied validating the kinetic parameters of first-order reaction and two-dimensional diffusion models for the oxidative pyrolysis stage (149.57kJ/mol, 6.97×10(10)1/s) and for combustion stage (77.98kJ/mol, 98.611/s), respectively. The comparison between theoretical and experimental conversion and conversion rate showed good agreement with average deviation lower than 2%, indicating that these results could be used for modeling of guarana seed residue.

Related Organizations
Keywords

Hot Temperature, Plant Extracts, Kinetics, Seeds, Thermogravimetry, Paullinia

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
hybrid