
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network

pmid: 28056364
Three-layered feedforward backpropagation (BP) artificial neural networks (ANN) and multiple nonlinear regression (MnLR) models were developed to estimate biogas and methane yield in an upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW). Anaerobic process parameters were optimized to identify their importance on methanation. pH, total chemical oxygen demand, ammonium, alkalinity, total Kjeldahl nitrogen, total phosphorus, volatile fatty acids and hydraulic retention time selected based on principal component analysis were used as input variables, whiles biogas and methane yield were employed as target variables. Quasi-Newton method and conjugate gradient backpropagation algorithms were best among eleven training algorithms. Coefficient of determination (R2) of the BP-ANN reached 98.72% and 97.93% whiles MnLR model attained 93.9% and 91.08% for biogas and methane yield, respectively. Compared with the MnLR model, BP-ANN model demonstrated significant performance, suggesting possible control of the anaerobic digestion process with the BP-ANN model.
- Harbin Institute of Technology China (People's Republic of)
- Harbin Institute of Technology China (People's Republic of)
- Heriot-Watt University United Kingdom
- Heriot-Watt University United Kingdom
Biological Oxygen Demand Analysis, Sewage, Starch, Wastewater, Bioreactors, Nonlinear Dynamics, Biofuels, Regression Analysis, Anaerobiosis, Neural Networks, Computer, Methane, Algorithms, Solanum tuberosum
Biological Oxygen Demand Analysis, Sewage, Starch, Wastewater, Bioreactors, Nonlinear Dynamics, Biofuels, Regression Analysis, Anaerobiosis, Neural Networks, Computer, Methane, Algorithms, Solanum tuberosum
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).104 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
