Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

In-situ injection of potassium hydroxide into briquetted wheat straw and meadow grass – Effect on biomethane production

Authors: Feng, Lu; Hernandez, Veronica Moset; Li, Wanwu; Chen, Chang; Møller, Henrik Bjarne;

In-situ injection of potassium hydroxide into briquetted wheat straw and meadow grass – Effect on biomethane production

Abstract

Alkaline pretreatment of lignocellulosic biomass has been intensively investigated but heavy water usage and environmental pollution from wastewater limits its industrial application. This study presents a pretreatment technique by in-situ injection of potassium hydroxide concentrations ranging from 0.8% to 10% (w/w) into the briquetting process of wheat straw and meadow grass. Results show that the biomethane yield and hydrolysis rate was improved significantly with a higher impact on wheat straw compared to meadow grass. The highest biomethane yield from wheat straw briquettes of 353mL.g-1 VS was obtained with 6.27% (w/w) potassium hydroxide injection, which was 14% higher than from untreated wheat straw. The hydrolysis rates of wheat straw and meadow grass increased from 4.27×10-2 to 5.32×10-2d-1 and 4.19×10-2 to 6.00×10-2d-1, respectively. The low water usage and no wastewater production make this a promising technology.

Related Organizations
Keywords

Potassium Compounds, Hydrolysis, Biogas, Lignocellulosic biomass, Grassland, Anaerobic digestion, Biofuels, Hydroxides, Potassium hydroxide, Methane, Alkaline pretreatment, Triticum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%