
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Wastewater treatment and biomass growth of eight plants for shallow bed wetland roofs

pmid: 30060439
Wetland roof (WR) could bring many advantages for tropical cities such as thermal benefits, flood control, green coverage and domestic wastewater treatment. This study investigates wastewater treatment and biomass growth of eight local plants in shallow bed WRs. Results showed that removal rates of WRs were 21-28 kg COD ha-1 day-1, 9-13 kg TN ha-1 day-1 and 0.5-0.9 kg TP ha-1 day-1, respectively. The plants generated more biomass at lower hydraulic loading rate (HLR). Dry biomass growth was 0.4-28.1 g day-1 for average HLR of 247-403 m3 ha-1 day-1. Green leaf area of the plants was ranging as high as 67-99 m2 leaves per m2 of WR. In general, the descent order of Kyllinga brevifoliaRottb (WR8), Cyperus javanicus Houtt (WR5) and Imperata cylindrical (WR4) was suggested as effective vegetations in WR conditions in terms of wastewater treatment, dry biomass growth and green coverage ratio.
- Ho Chi Minh City University of Technology Viet Nam
- University of Technology Sydney Australia
- An Giang University Viet Nam
- Duy Tan University Viet Nam
- An Giang University Viet Nam
Plant Development, Plants, Wastewater, Waste Disposal, Fluid, Facility Design and Construction, Wetlands, Biomass, Cities, Cyperus
Plant Development, Plants, Wastewater, Waste Disposal, Fluid, Facility Design and Construction, Wetlands, Biomass, Cities, Cyperus
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
