
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An overview of microbial biogas enrichment

pmid: 29908874
Biogas upgrading technologies have received widespread attention recently and are researched extensively. Microbial biogas upgrading (biomethanation) relies on the microbial performance in enriched H2 and CO2 environments. In this review, recent developments and applications of CH4 enrichment in microbial methanation processes are systematically reviewed. During biological methanation, either H2 can be injected directly inside the anaerobic digester to enrich CH4 by a consortium of mixed microbial species or H2 can be injected into a separate bioreactor, where CO2 contained in biogas is coupled with H2 and converted to CH4, or a combination hereof. The available microbial technologies based on hydrogen-mediated CH4 enrichment, in particular ex-situ, in-situ and bioelectrochemical, are compared and discussed. Moreover, gas-liquid mass transfer limitations, and dynamics of bacteria-archaea interactions shift after H2 injection are thoroughly discussed. Finally, the summary of existing demonstration, pilot plants and commercial CH4 enrichment plants based on microbial biomethanation are critically reviewed.
- Danish Gas Technology Centre (Denmark) Denmark
- University of Oxford United Kingdom
- Aarhus University Denmark
- Flemish Institute for Technological Research Belgium
- University of Oxford United Kingdom
Methanation, In-situ, Archaea, Methane enrichment, Bioreactors, Biogas upgrading, Biofuels, Hydrogenation, Methane, Ex-situ and Bioelectrochemical System, Hydrogen
Methanation, In-situ, Archaea, Methane enrichment, Bioreactors, Biogas upgrading, Biofuels, Hydrogenation, Methane, Ex-situ and Bioelectrochemical System, Hydrogen
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).194 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
