Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Maximizing biomass and lipid production in Ettlia sp. by ultraviolet stress in a continuous culture

Authors: Seong-Hyun Seo; Ankita Srivastava; Myung-Soo Han; Hyung-Gwan Lee; Hee-Mock Oh;

Maximizing biomass and lipid production in Ettlia sp. by ultraviolet stress in a continuous culture

Abstract

Lipid production in microalgae can be induced by various stress factors. However, stress induced lipid accumulation requires considerable time leading to the decrease in lipid productivity. Here, we attempted to increase the lipid productivity while maintaining the high growth of Ettlia sp. by optimizing nitrogen concentration and UV exposure in a continuous culture. The biomass and lipid productivities of Ettlia sp. cultured with 150 mg N L-1 and UV-A added PAR were 1.67 ± 0.08 g L-1 d-1 and 0.55 ± 0.05 g L-1 d-1, respectively. Lipid productivity and lipid content were around 43.7% and 33.7% higher, respectively in UV-A treatment compared to the control. Moreover, gene-expression patterns related to antioxidant defense and intracellular ROS levels indicated that UV-A affected certain ROS and antioxidants pathways and successfully induced the lipid accumulation in Ettlia sp. This strategy to activate lipid accumulation can be applied in other microalgae without affecting their growth.

Keywords

Chlorophyceae, Microalgae, Biomass, Lipids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%