Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Preparation of mesoporous ZSM-5 catalysts using green templates and their performance in biomass catalytic pyrolysis

Authors: Qingfeng Che; Minjiao Yang; Xianhua Wang; Qing Yang; Yingquan Chen; Xu Chen; Wei Chen; +4 Authors

Preparation of mesoporous ZSM-5 catalysts using green templates and their performance in biomass catalytic pyrolysis

Abstract

The micropores present in ZSM-5 are beneficial to the production of aromatic compounds in biomass catalytic pyrolysis, although the small pore size leads to severe coke deposition on the catalyst. In this study, a micro-mesoporous structured ZSM-5 zeolite catalyst was synthesized and modified with green templates (sucrose, cellulose, and starch) to introduce additional mesopores. It was found that the catalysts modified using the sucrose and cellulose templates only exhibited a slight increase in their micropore volumes, while the mesopore volume of ZSM-ST (modified with the starch template) reached up to 0.359 cm3/g. This increase promoted the cracking of bulky oxygenates and suppressed the polymerization reaction on the ZSM-5 surface, thereby producing a greater number of aromatic products. Moreover, the benzene, toluene, and xylene (BTX) yields exhibited a positive correlation with the catalyst mesopore volume, with the highest BTX yield of 91.84 mg/g being obtained with 10% starch addition.

Related Organizations
Keywords

Biomass, Xylenes, Catalysis, Pyrolysis, Toluene

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Top 1%
Top 10%
Top 1%