
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Heteropoly acids enhanced neutral deep eutectic solvent pretreatment for enzymatic hydrolysis and ethanol fermentation of Miscanthus x giganteus under mild conditions

pmid: 31479857
To improve the neutral DES (choline chloride/glycerol) pretreatment performance, three environmentally friendly heteropoly acids (phosphotungstic, phosphomolybdic and silicotungstic acids) were used as catalysts. Pretreatment with silicotungstic acid at 120 °C for 3 h resulted in 97.3% of enzymatic digestibility at an enzyme loading of 15FPU/g substrate, which was approximately eight times more than that of raw samples. More importantly, 80% of glucose yield was obtained within 12 h. Simultaneously, 81.8% of ethanol yield was achieved in the SSSF process. The efficient conversion was ascribed to the significant delignification (89.5%), which resulted in the exposure of more accessible specific surface area. This was attributed to that the proton (H+) from heteropoly acids could significantly contribute to the lignin degradation. Intriguingly, trace acetic acid (0.39 g/L) and HMF (0.21-0.95 g/L) in the pretreatment liquor were produced without any significant deleterious effects. These discoveries provide new insights for efficient biomass conversion under mild conditions.
- Guangdong University of Technology China (People's Republic of)
- Guangdong University of Technology China (People's Republic of)
- Qingdao University of Science and Technology China (People's Republic of)
- Guangdong University of Technology China (People's Republic of)
- Beijing Forestry University China (People's Republic of)
Ethanol, Hydrolysis, Fermentation, Solvents, Biomass, Lignin
Ethanol, Hydrolysis, Fermentation, Solvents, Biomass, Lignin
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).59 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
