Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quorum-sensing mediated signals: A promising multi-functional modulators for separately enhancing algal yield and power generation in microbial fuel cell

Authors: Swati Das; Sovik Das; M.M. Ghangrekar;

Quorum-sensing mediated signals: A promising multi-functional modulators for separately enhancing algal yield and power generation in microbial fuel cell

Abstract

Quorum-sensing molecules (QSMs) extracted from anaerobic sludge can help to enhance the overall productivity of algal culture, thus diminishing the per unit production cost of algae based-biofuel. In this investigation, QSMs extracted from anaerobic bacterial sludge of microbial fuel cell (MFC) was used to enhance the overall productivity of Chlorella sorokiniana cultivated in a separate bubble column photobioreactor. With the dosage of QSMs, algal biomass productivity and lipid content were increased by 2.25 times and 1.28 times, respectively. Further, lipid extracted biomass of quorum-sensing induced algae (LEB-QSA) was applied in anodic chamber of MFC to function as substrate and mediator, which enhanced the coulombic efficiency of this MFC by 74% as compared to the control MFC operated without LEB-QSA. Thus, this exploration demonstrated successful improvement in the macromolecular properties of algal culture dosed with QSMs and improved performance of MFC with the application of LEB-QSA as mediator and substrate.

Keywords

Photobioreactors, Sewage, Bioelectric Energy Sources, Biomass, Chlorella

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 1%
Top 10%
Top 1%