Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RiuNet
Article . 2020
License: CC BY NC ND
Data sources: RiuNet
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL INRAE
Article . 2020
Data sources: HAL INRAE
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale

Authors: Robles Martínez, Ángel; Capson-Tojo, Gabriel; Gales, Amandine; Viruela, Alexandre; Sialve, Bruno; Seco, Aurora; Steyer, Jean-Philippe; +1 Authors

Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale

Abstract

The objective of this study was to evaluate the performance of an outdoor membrane-coupled high-rate algal pond equipped with industrial-scale membranes for treating urban wastewater. Decoupling biomass retention time (BRT) and hydraulic retention time (HRT) by membrane filtration resulted in improved process efficiencies, with higher biomass productivities and nutrient removal rates when operating at low HRTs. At 6 days of BRT, biomass productivity increased from 30 to 66 and to 95 g·m-3·d-1 when operating at HRTs of 6, 4 and 2.5 days, respectively. The corresponding nitrogen removal rates were 4, 8 and 11 g N·m-3·d-1 and the phosphorous removal rates were 0.5, 1.3 and 1.6 g P·m-3·d-1. The system was operated keeping moderate specific air demands (0.25 m3·m-2·h-1), resulting in reasonable operating and maintenance costs (€0.04 per m3) and energy requirements (0.29 kWh per m3). The produced water was free of pathogens and could be directly used for reusing purposes.

Countries
Spain, France
Keywords

INGENIERIA HIDRAULICA, 550, [SPI.GPROC] Engineering Sciences [physics]/Chemical and Process Engineering, Nitrogen, Ultrafiltration, Wastewater, Waste Disposal, Fluid, Water Purification, Hollow-fibre membranes, nutrient recovery, [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering, secondary urban wastewater treatment, Biomass, Ponds, High-rate algal pond (HRAP), TECNOLOGIA DEL MEDIO AMBIENTE, industrial-scale hollow-fibre membranes, High-rate algal pond (HRAP) industrial-scale hollow-fibre membranes nutrient recovery secondary urban wastewater treatment ultrafiltration, 620, Industrial-scale, HRAP, Nutrient recovery, ultrafiltration

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 55
    download downloads 169
  • 55
    views
    169
    downloads
    Data sourceViewsDownloads
    RiuNet55169
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
40
Top 10%
Top 10%
Top 10%
55
169
Green