Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2020 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed

Authors: Vanete Thomaz Soccol; Gilberto Vinícius de Melo Pereira; Antonio Irineudo Magalhães; Carlos Ricardo Soccol; Adriane Bianchi Pedroni Medeiros; Luciana Porto de Souza Vandenberghe; Júlio Cesar de Carvalho; +3 Authors

Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed

Abstract

Microalgae are sources of nutritional products and biofuels. However, their economical processing is challenging, because of (i) the inherently low concentration of biomass in algal cultures, below 0.5%, (ii) the high-water content in the harvested biomass, above 70%; and (iii) the variable intracellular content and composition. Cell wall structure and strength vary enormously among microalgae, from naked Dunaliella cells to robust Haematococcus cysts. High-value products justify using fast and energy-intensive processes, ranging from 0.23 kWh/kg dry biomass in high-pressure homogenization, to 6 kWh/kg dry biomass in sonication. However, in biofuels production, the energy input must be minimized, requiring slower, thermal or chemical pretreatments. Whichever the primary fraction of interest, the spent biomass can be processed into valuable by-products. This review discusses microalgal cell structure and composition, how it affects pretreatment, focusing on technologies tested for large scale or promising for industrial processes, and how these can be integrated into algal biorefineries.

Keywords

Food, Biofuels, Microalgae, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    127
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
127
Top 1%
Top 10%
Top 1%