
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Development and life cycle assessment of an auto circulating bio-electrochemical reactor for energy positive continuous wastewater treatment

pmid: 32135472
Bioelectrochemical systems like microbial fuel cells (MFCs) are quaint systems known to metamorphose the chemical energy of organic matter into electrical energy using catalytic activity of microorganisms. A novel continuous Auto Circulating Bio-Electrochemical Reactor (AutoCirBER) was developed to fulfil the gap of 'simple, inexpensive and compact design' that can continuously treat larger amount of organic wastewater at shorter residence time and without consuming external energy for liquid mixing. AutoCirBER eliminated the need for external agitation for liquid-mixing and therefore, energy requirements. AutoCirBER was operated in continuous-mode and hydraulic retention time was optimized. The reactor underwent performance check-up viz. COD removal, net power output, columbic efficiency, sludge generation and an attributional life cycle assessment (LCA) was also conducted. AutoCirBER was sustainable to run in continuous-mode and showed more than 90.4% of COD removal, and 59.55 W.h net annual energy recovery. Experimental LCA of AutoCirBER also displays its environmental feasibility in longer run.
- Government of India India
- Department of Scientific and Industrial Research India
- Government of India India
- Anand Engineering College, Agra India
- Sharda University India
Bioreactors, Electricity, Sewage, Bioelectric Energy Sources, Wastewater, Waste Disposal, Fluid
Bioreactors, Electricity, Sewage, Bioelectric Energy Sources, Wastewater, Waste Disposal, Fluid
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
